Inactivation in HCN Channels Results from Reclosure of the Activation Gate Desensitization to Voltage

نویسندگان

  • Ki Soon Shin
  • Chantal Maertens
  • Catherine Proenza
  • Brad S Rothberg
  • Gary Yellen
چکیده

Hyperpolarization-activated HCN channels are modulated by direct binding of cyclic nucleotides. For HCN2 channels, cAMP shifts the voltage dependence for activation, with relatively little change in the maximal conductance. By contrast, in spHCN channels, cAMP relieves a rapid inactivation process and produces a large increase in maximum conductance. Our results suggest that these two effects of cAMP represent the same underlying process. We also find that spHCN inactivation occurs not by closure of a specialized inactivation gate, as for other voltage-dependent channels, but by reclosure of the same intracellular gate opened upon activation. Effectively, the activation gate exhibits a "desensitization to voltage," perhaps by slippage of the coupling between the voltage sensors and the gate. Differences in the initial coupling efficiency could allow cAMP to produce either the inactivation or the shift phenotype by strengthening effective coupling: a shift would naturally occur if coupling is already strong in the absence of cAMP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

P 44: The Role of HCN Channels in T Cell Function

Ion channels play a major role in the regulation of T cell function in health and disease. In a computer-based model, established to simulate T cells’ membrane potential (VM) generation, we discovered a discrepancy between the simulation and patch-clamp recordings. The predicted VM was more hyperpolarized than the measured VM, indicating that a yet unknown, depolarizing ion current might ...

متن کامل

Dual Regulation of Voltage-Sensitive Ion Channels by PIP2

Over the past 16 years, there has been an impressive number of ion channels shown to be sensitive to the major phosphoinositide in the plasma membrane, phosphatidylinositol 4,5-bisphosphate (PIP(2)). Among them are voltage-gated channels, which are crucial for both neuronal and cardiac excitability. Voltage-gated calcium (Cav) channels were shown to be regulated bidirectionally by PIP(2). On on...

متن کامل

Gating Charge Immobilization in Kv4.2 Channels: The Basis of Closed-State Inactivation

Kv4 channels mediate the somatodendritic A-type K+ current (I(SA)) in neurons. The availability of functional Kv4 channels is dynamically regulated by the membrane potential such that subthreshold depolarizations render Kv4 channels unavailable. The underlying process involves inactivation from closed states along the main activation pathway. Although classical inactivation mechanisms such as N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2004